Search results

1 – 10 of 26
Article
Publication date: 8 June 2015

Ahmad Mozaffari, Nasser L. Azad and Alireza Fathi

The purpose of this paper is to examine the structural and computational potentials of a powerful class of neural networks (NNs), called multiple-valued logic neural networks…

Abstract

Purpose

The purpose of this paper is to examine the structural and computational potentials of a powerful class of neural networks (NNs), called multiple-valued logic neural networks (MVLNN), for predicting the behavior of phenomenological systems with highly nonlinear dynamics. MVLNNs are constructed based on the integration of a number of neurons working based on the principle of multiple-valued logics. MVLNNs possess some particular features, namely complex-valued weights, input, and outputs coded by kth roots of unity, and a continuous activation as a mean for transferring numbers from complex spaces to trigonometric spaces, which distinguish them from most of the existing NNs.

Design/methodology/approach

The presented study can be categorized into three sections. At the first part, the authors attempt at providing the mathematical formulations required for the implementation of ARX-based MVLNN (AMVLNN). In this context, it is indicated that how the concept of ARX can be used to revise the structure of MVLNN for online applications. Besides, the stepwise formulation for the simulation of Chua’s oscillatory map and multiple-valued logic-based BP are given. Through an analysis, some interesting characteristics of the Chua’s map, including a number of possible attractors of the state and sequences generated as a function of time, are given.

Findings

Based on a throughout simulation as well as a comprehensive numerical comparative study, some important features of AMVLNN are demonstrated. The simulation results indicate that AMVLNN can be employed as a tool for the online identification of highly nonlinear dynamic systems. Furthermore, the results show the compatibility of the Chua’s oscillatory system with BP for an effective tuning of the synaptic weights. The results also unveil the potentials of AMVLNN as a fast, robust, and efficient control-oriented model at the heart of NMPC control schemes.

Originality/value

This study presents two innovative propositions. First, the structure of MVLNN is modified based on the concept of ARX system identification programming to suit the base structure for coping with chaotic and highly nonlinear systems. Second, the authors share the findings about the learning characteristics of MVLNNs. Through an exhaustive comparative study and considering different rival methodologies, a novel and efficient double-stage learning strategy is proposed which remarkably improves the performance of MVLNNs. Finally, the authors describe the outline of a novel formulation which prepares the proposed AMVLNN for applications in NMPC controllers for dynamic systems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 8 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 9 March 2015

Ahmad Mozaffari, Nasser L. Azad and Alireza Fathi

The purpose of this paper is to probe the potentials of computational intelligence (CI) and bio-inspired computational tools for designing a hybrid framework which can…

1039

Abstract

Purpose

The purpose of this paper is to probe the potentials of computational intelligence (CI) and bio-inspired computational tools for designing a hybrid framework which can simultaneously design an identifier to capture the underlying knowledge regarding a given plug-in hybrid electric vehicle’s (PHEVs) fuel cost and optimize its fuel consumption rate. Besides, the current investigation aims at elaborating the effectiveness of Pareto-based multiobjective programming for coping with the difficulties associated with such a tedious automotive engineering problem.

Design/methodology/approach

The hybrid intelligent tool is implemented in two different levels. The hyper-level algorithm is a Pareto-based memetic algorithm, known as the chaos-enhanced Lamarckian immune algorithm (CLIA), with three different objective functions. As a hyper-level supervisor, CLIA tries to design a fast and accurate identifier which, at the same time, can handle the effects of uncertainty as well as use this identifier to find the optimum design parameters of PHEV for improving the fuel economy.

Findings

Based on the conducted numerical simulations, a set of interesting points are inferred. First, it is observed that CI techniques provide us with a comprehensive tool capable of simultaneous identification/optimization of the PHEV operating features. It is concluded that considering fuzzy polynomial programming enables us to not only design a proper identifier but also helps us capturing the undesired effects of uncertainty and measurement noises associated with the collected database.

Originality/value

To the best knowledge of the authors, this is the first attempt at implementing a comprehensive hybrid intelligent tool which can use a set of experimental data representing the behavior of PHEVs as the input and yields the optimized values of PHEV design parameters as the output.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 8 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 26 December 2023

Farshad Peiman, Mohammad Khalilzadeh, Nasser Shahsavari-Pour and Mehdi Ravanshadnia

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the…

Abstract

Purpose

Earned value management (EVM)–based models for estimating project actual duration (AD) and cost at completion using various methods are continuously developed to improve the accuracy and actualization of predicted values. This study primarily aimed to examine natural gradient boosting (NGBoost-2020) with the classification and regression trees (CART) base model (base learner). To the best of the authors' knowledge, this concept has never been applied to EVM AD forecasting problem. Consequently, the authors compared this method to the single K-nearest neighbor (KNN) method, the ensemble method of extreme gradient boosting (XGBoost-2016) with the CART base model and the optimal equation of EVM, the earned schedule (ES) equation with the performance factor equal to 1 (ES1). The paper also sought to determine the extent to which the World Bank's two legal factors affect countries and how the two legal causes of delay (related to institutional flaws) influence AD prediction models.

Design/methodology/approach

In this paper, data from 30 construction projects of various building types in Iran, Pakistan, India, Turkey, Malaysia and Nigeria (due to the high number of delayed projects and the detrimental effects of these delays in these countries) were used to develop three models. The target variable of the models was a dimensionless output, the ratio of estimated duration to completion (ETC(t)) to planned duration (PD). Furthermore, 426 tracking periods were used to build the three models, with 353 samples and 23 projects in the training set, 73 patterns (17% of the total) and six projects (21% of the total) in the testing set. Furthermore, 17 dimensionless input variables were used, including ten variables based on the main variables and performance indices of EVM and several other variables detailed in the study. The three models were subsequently created using Python and several GitHub-hosted codes.

Findings

For the testing set of the optimal model (NGBoost), the better percentage mean (better%) of the prediction error (based on projects with a lower error percentage) of the NGBoost compared to two KNN and ES1 single models, as well as the total mean absolute percentage error (MAPE) and mean lags (MeLa) (indicating model stability) were 100, 83.33, 5.62 and 3.17%, respectively. Notably, the total MAPE and MeLa for the NGBoost model testing set, which had ten EVM-based input variables, were 6.74 and 5.20%, respectively. The ensemble artificial intelligence (AI) models exhibited a much lower MAPE than ES1. Additionally, ES1 was less stable in prediction than NGBoost. The possibility of excessive and unusual MAPE and MeLa values occurred only in the two single models. However, on some data sets, ES1 outperformed AI models. NGBoost also outperformed other models, especially single models for most developing countries, and was more accurate than previously presented optimized models. In addition, sensitivity analysis was conducted on the NGBoost predicted outputs of 30 projects using the SHapley Additive exPlanations (SHAP) method. All variables demonstrated an effect on ETC(t)/PD. The results revealed that the most influential input variables in order of importance were actual time (AT) to PD, regulatory quality (RQ), earned duration (ED) to PD, schedule cost index (SCI), planned complete percentage, rule of law (RL), actual complete percentage (ACP) and ETC(t) of the ES optimal equation to PD. The probabilistic hybrid model was selected based on the outputs predicted by the NGBoost and XGBoost models and the MAPE values from three AI models. The 95% prediction interval of the NGBoost–XGBoost model revealed that 96.10 and 98.60% of the actual output values of the testing and training sets are within this interval, respectively.

Research limitations/implications

Due to the use of projects performed in different countries, it was not possible to distribute the questionnaire to the managers and stakeholders of 30 projects in six developing countries. Due to the low number of EVM-based projects in various references, it was unfeasible to utilize other types of projects. Future prospects include evaluating the accuracy and stability of NGBoost for timely and non-fluctuating projects (mostly in developed countries), considering a greater number of legal/institutional variables as input, using legal/institutional/internal/inflation inputs for complex projects with extremely high uncertainty (such as bridge and road construction) and integrating these inputs and NGBoost with new technologies (such as blockchain, radio frequency identification (RFID) systems, building information modeling (BIM) and Internet of things (IoT)).

Practical implications

The legal/intuitive recommendations made to governments are strict control of prices, adequate supervision, removal of additional rules, removal of unfair regulations, clarification of the future trend of a law change, strict monitoring of property rights, simplification of the processes for obtaining permits and elimination of unnecessary changes particularly in developing countries and at the onset of irregular projects with limited information and numerous uncertainties. Furthermore, the managers and stakeholders of this group of projects were informed of the significance of seven construction variables (institutional/legal external risks, internal factors and inflation) at an early stage, using time series (dynamic) models to predict AD, accurate calculation of progress percentage variables, the effectiveness of building type in non-residential projects, regular updating inflation during implementation, effectiveness of employer type in the early stage of public projects in addition to the late stage of private projects, and allocating reserve duration (buffer) in order to respond to institutional/legal risks.

Originality/value

Ensemble methods were optimized in 70% of references. To the authors' knowledge, NGBoost from the set of ensemble methods was not used to estimate construction project duration and delays. NGBoost is an effective method for considering uncertainties in irregular projects and is often implemented in developing countries. Furthermore, AD estimation models do fail to incorporate RQ and RL from the World Bank's worldwide governance indicators (WGI) as risk-based inputs. In addition, the various WGI, EVM and inflation variables are not combined with substantial degrees of delay institutional risks as inputs. Consequently, due to the existence of critical and complex risks in different countries, it is vital to consider legal and institutional factors. This is especially recommended if an in-depth, accurate and reality-based method like SHAP is used for analysis.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 21 February 2020

Farhad Hosseinzadeh, Behzad Paryzad, Nasser Shahsavari Pour and Esmaeil Najafi

The optimization and tradeoff of cost-time-quality-risk in one dimension and this four-dimensional problem in ambiguous mode and risk can be neither predicted nor estimated. This…

Abstract

Purpose

The optimization and tradeoff of cost-time-quality-risk in one dimension and this four-dimensional problem in ambiguous mode and risk can be neither predicted nor estimated. This study aims to solve this problem and rank fuzzy numbers using an innovative algorithm “STHD” and a special technique “radius of gyration” (ROG) for fuzzy answers, respectively.

Design/methodology/approach

First, it is the optimization of a fully fuzzy four-dimensional problem which has never been dealt with in regard to risk in ambiguous mode and complexities. Therefore, the risk is a parameter which has been examined neither in probability and estimableness mode nor in the ambiguous mode so far. Second, it is a fully fuzzy tradeoff which, based on the principle of incompatibility “Zadeh, 1973”, proposes that when the complexity of a system surpasses the limited point, it becomes impossible to define the performance of that system accurately, precisely and meaningfully. The authors believe that this principle is the source of fuzzy logic. Third, for calculating and ranking fuzzy numbers of answers, a special technique for fuzzy numbers has been used. Fourth, For the sake of ease, precision and efficiency, an innovative algorithm called the technique of hunting dolphins “STHD” has been used. Finally, the problem is very close to reality. By applying risk in ambiguous mode, the problem has been realistically looked at.

Findings

The results showed that the algorithm was highly robust, with its performance depending very little on the regulation of the parameters. Ranking fuzzy numbers using the ROG indicated the flexibility of fuzzy logic, and it was also determined that the most appropriate regulations were to ensure low time, risk and cost but maximum quality in calculations, which were produced non-uniformly based on the levels of Pareto answers.

Originality/value

The ROG and Chanas Fuzzy Critical Path Method as developed by other researchers have been used. Despite the increase in limitations, parameters can develop. The originality of this study with regard to evaluating the results of tradeoff combinatorial optimization is upon decision-making which has a special and highly strategic role in the fate of the project, with the research been conducted with a special approach and different tools in a fully fuzzy environment.

Article
Publication date: 4 November 2014

Ahmad Mozaffari, Nasser Lashgarian Azad and Alireza Fathi

The purpose of this paper is to demonstrate the applicability of swarm and evolutionary techniques for regularized machine learning. Generally, by defining a proper penalty…

Abstract

Purpose

The purpose of this paper is to demonstrate the applicability of swarm and evolutionary techniques for regularized machine learning. Generally, by defining a proper penalty function, regularization laws are embedded into the structure of common least square solutions to increase the numerical stability, sparsity, accuracy and robustness of regression weights. Several regularization techniques have been proposed so far which have their own advantages and disadvantages. Several efforts have been made to find fast and accurate deterministic solvers to handle those regularization techniques. However, the proposed numerical and deterministic approaches need certain knowledge of mathematical programming, and also do not guarantee the global optimality of the obtained solution. In this research, the authors propose the use of constraint swarm and evolutionary techniques to cope with demanding requirements of regularized extreme learning machine (ELM).

Design/methodology/approach

To implement the required tools for comparative numerical study, three steps are taken. The considered algorithms contain both classical and swarm and evolutionary approaches. For the classical regularization techniques, Lasso regularization, Tikhonov regularization, cascade Lasso-Tikhonov regularization, and elastic net are considered. For swarm and evolutionary-based regularization, an efficient constraint handling technique known as self-adaptive penalty function constraint handling is considered, and its algorithmic structure is modified so that it can efficiently perform the regularized learning. Several well-known metaheuristics are considered to check the generalization capability of the proposed scheme. To test the efficacy of the proposed constraint evolutionary-based regularization technique, a wide range of regression problems are used. Besides, the proposed framework is applied to a real-life identification problem, i.e. identifying the dominant factors affecting the hydrocarbon emissions of an automotive engine, for further assurance on the performance of the proposed scheme.

Findings

Through extensive numerical study, it is observed that the proposed scheme can be easily used for regularized machine learning. It is indicated that by defining a proper objective function and considering an appropriate penalty function, near global optimum values of regressors can be easily obtained. The results attest the high potentials of swarm and evolutionary techniques for fast, accurate and robust regularized machine learning.

Originality/value

The originality of the research paper lies behind the use of a novel constraint metaheuristic computing scheme which can be used for effective regularized optimally pruned extreme learning machine (OP-ELM). The self-adaption of the proposed method alleviates the user from the knowledge of the underlying system, and also increases the degree of the automation of OP-ELM. Besides, by using different types of metaheuristics, it is demonstrated that the proposed methodology is a general flexible scheme, and can be combined with different types of swarm and evolutionary-based optimization techniques to form a regularized machine learning approach.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 7 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 6 June 2020

Reza Fattahi, Reza Tavakkoli-Moghaddam, Mohammad Khalilzadeh, Nasser Shahsavari-Pour and Roya Soltani

Risk assessment is a very important step toward managing risks in various organizations and industries. One of the most extensively applied risk assessment techniques is failure…

Abstract

Purpose

Risk assessment is a very important step toward managing risks in various organizations and industries. One of the most extensively applied risk assessment techniques is failure mode and effects analysis (FMEA). In this paper, a novel fuzzy multiple-criteria decision-making (MCDM)-based FMEA model is proposed for assessing the risks of different failure modes more accurately.

Design/methodology/approach

In this model, the weight of each failure mode is considered instead of risk priority number (RPN). Additionally, three criteria of time, cost and profit are added to the three previous risk factors of occurrence (O), severity (S) and detection (D). Furthermore, the weights of the mentioned criteria and the priority weights of the decision-makers calculated by modified fuzzy AHP and fuzzy weighted MULTIMOORA methods, respectively, are considered in the proposed model. A new ranking method of fuzzy numbers is also utilized in both proposed fuzzy MCDM methods.

Findings

To show the capability and usefulness of the suggested fuzzy MCDM-based FMEA model, Kerman Steel Industries Factory is considered as a case study. Moreover, a sensitivity analysis is conducted for validating the achieved results. Findings indicate that the proposed model is a beneficial and applicable tool for risk assessment.

Originality/value

To the best of authors’ knowledge, no research has considered the weights of failure modes, the weights of risk factors and the priority weights of decision-makers simultaneously in the FMEA method.

Details

Journal of Enterprise Information Management, vol. 33 no. 5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 30 September 2014

Asghar Zajkani, Abolfazl Darvizeh and Mansour Darvizeh

The purpose of this paper is to introduce a computational time dependent modeling to investigate propagation of elastic-viscoplastic zones in the shock wave loaded circular…

Abstract

Purpose

The purpose of this paper is to introduce a computational time dependent modeling to investigate propagation of elastic-viscoplastic zones in the shock wave loaded circular plates.

Design/methodology/approach

Constitutive equations are implemented incrementally by the Von-Kármán finite deflection system which is coupled with a mixed strain hardening rule and physical-base viscoplastic models. Time integrations of the equations are done by the return mapping technique through the cutting-plane algorithm. An integrated solution is established by pseudo-spectral collocation methodology. The Chebyshev basis functions are utilized to evaluate the coefficients of displacement fields. Temporal terms are discretized by the Houbolt marching method. Spatial linearizations are accomplished by the quadratic extrapolation technique.

Findings

Results of the center point deflections, effective plastic strain and stress (dynamic flow stress) and temperature rise are compared for three features of the Von-Kármán system. Identifying time history of resultant stresses, propagations of the viscoplastic plastic zones are illustrated for two circumstances; with considering strain rate and hardening effects, and without them. Some of modeling and computation aspects are discussed, carefully. When the results are compared with experimental data of shock wave loadings and finite element simulations, good agreements between them are observed.

Originality/value

This computational approach makes coupling the structural equations with the physical descriptions of the high rate deformation through step-by-step spectral solution of the constitutive equations.

Details

Engineering Computations, vol. 31 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 November 2018

Nasser Javid, Kaveh Khalili-Damghani, Ahmad Makui and Farshid Abdi

This paper aims to propose a multi-dimensional model on the basis of the key factors of the flexibility and the complexity through structural equation modeling (SEM). Dimensions…

Abstract

Purpose

This paper aims to propose a multi-dimensional model on the basis of the key factors of the flexibility and the complexity through structural equation modeling (SEM). Dimensions of the flexibilities and complexity, including 16 main factors and 34 sub-factors, are investigated. The sampling of the research is accomplished using both academic and industrial experts.

Design/methodology/approach

A huge electronic questionnaire analysis, including 1,250 samples from which 1,036 were returned, was accomplished in various universities and manufacturing companies throughout the USA, Europe and Asia. Partial least square-SEM (PLS-SEM) is used to test the hypotheses through confirmatory factor analysis.

Findings

The results reveal insightful information about the impacts of different dimensions of flexibility on each other and also the effect of the flexibility on the complexity. Finally, system of linear mathematical equations for flexibility-complexity trade-off is proposed. This can be applied to realize the trade-off among dimensions of flexibility and complexity.

Originality/value

Flexible manufacturing systems are formed to meet the needs of the customers. Such systems try to produce products in appropriate quality at the right time and at the specified quantity. These, in turn, require flexibility and will cause complexity. Although flexibility and complexity are both important, there is no comprehensive framework in which the multi-dimensional relationships of the manufacturing flexibility and complexity, as well as their dimensions, are demonstrated.

Article
Publication date: 5 February 2024

Ahsan Haghgoei, Alireza Irajpour and Nasser Hamidi

This paper aims to develop a multi-objective problem for scheduling the operations of trucks entering and exiting cross-docks where the number of unloaded or loaded products by…

Abstract

Purpose

This paper aims to develop a multi-objective problem for scheduling the operations of trucks entering and exiting cross-docks where the number of unloaded or loaded products by trucks is fuzzy logistic. The first objective function minimizes the maximum time to receive the products. The second objective function minimizes the emission cost of trucks. Finally, the third objective function minimizes the number of trucks assigned to the entrance and exit doors.

Design/methodology/approach

Two steps are implemented to validate and modify the proposed model. In the first step, two random numerical examples in small dimensions were solved by GAMS software with min-max objective function as well as genetic algorithms (GA) and particle swarm optimization. In the second step, due to the increasing dimensions of the problem and computational complexity, the problem in question is part of the NP-Hard problem, and therefore multi-objective meta-heuristic algorithms are used along with validation and parameter adjustment.

Findings

Therefore, non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are used to solve 30 random problems in high dimensions. Then, the algorithms were ranked using the TOPSIS method for each problem according to the results obtained from the evaluation criteria. The analysis of the results confirms the applicability of the proposed model and solution methods.

Originality/value

This paper proposes mathematical model of truck scheduling for a real problem, including cross-docks that play an essential role in supply chains, as they could reduce order delivery time, inventory holding costs and shipping costs. To solve the proposed multi-objective mathematical model, as the problem is NP-hard, multi-objective meta-heuristic algorithms are used along with validation and parameter adjustment. Therefore, NSGA-II and NRGA are used to solve 30 random problems in high dimensions.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 4 November 2013

Morteza Enhessari

Inorganic pigments have been widely investigated due to their chemical stability such as resistance to chemical attacks by acids and alkalis, excellent hardness and high…

Abstract

Purpose

Inorganic pigments have been widely investigated due to their chemical stability such as resistance to chemical attacks by acids and alkalis, excellent hardness and high temperature stability. Cr1.3Fe0.7O3 which is considered as a ceramic nanopigment also seems to be a highly efficient photovoltaic material. The paper aims to discuss these issues.

Design/methodology/approach

In this work, the paper reports the synthesis of a novel and high purity Cr1.3Fe0.7O3 nanopigment via sol-gel process using stearic acid as complexing agent. The method includes formation of an organic precursor with metallic cations homogeneously distributed all over the matrix. Sample characterisations were performed by X-ray diffraction, electron microscopy, UV-vis diffused reflectance spectra and photoluminescence. The transport properties and colour characteristics were also investigated by spectroscopic and technological characterisation of the synthesised nanoparticles.

Findings

The prepared nanopigments were uniform in distribution and a spherical morphology with an average size of about 200 nm was observed. Cr1.3Fe0.7O3 nanoparticles showed a direct band gap value of 2.85 eV and the colour efficiency of the nanopigments evaluated by colourimetric analysis resulted characteristic values of L*=39.96, a*=3.67 and b*=3.12.

Originality/value

This method for synthesis of nanopigments is novel and could be employed for various applications in synthesis of wide variety of nanoceramics.

Details

Pigment & Resin Technology, vol. 42 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 26